Base sizes of primitive permutation groups
نویسندگان
چکیده
Abstract Let G be a permutation group, acting on set $$\varOmega $$ ? of size n . A subset $${\mathcal {B}}$$ xmlns:mml="http://www.w3.org/1998/Math/MathML">B is base for if the pointwise stabilizer $$G_{({\mathcal {B}})}$$ xmlns:mml="http://www.w3.org/1998/Math/MathML">G(B) trivial. b ( ) minimal subgroup $$\mathrm {Sym}(n)$$ xmlns:mml="http://www.w3.org/1998/Math/MathML">Sym(n) large there exist integers m and $$r \ge 1$$ xmlns:mml="http://www.w3.org/1998/Math/MathML">r?1 such that $${{\,\mathrm{Alt}\,}}(m)^r \unlhd \le {{\,\mathrm{Sym}\,}}(m)\wr {{\,\mathrm{Sym}\,}}(r)$$ xmlns:mml="http://www.w3.org/1998/Math/MathML">Alt(m)r?G?Sym(m)?(r) , where action $${{\,\mathrm{Sym}\,}}(m)$$ />(m) k -element subsets $$\{1,\dots ,m\}$$ xmlns:mml="http://www.w3.org/1998/Math/MathML">{1,?,m} wreath product acts with action. In this paper we prove primitive not base, then either Mathieu group {M}_{24}$$ xmlns:mml="http://www.w3.org/1998/Math/MathML">M24 in its natural 24 points, or $$b(G)\le \lceil \log n\rceil +1$$ xmlns:mml="http://www.w3.org/1998/Math/MathML">b(G)??logn?+1 Furthermore, show are infinitely many groups which $$b(G) > + xmlns:mml="http://www.w3.org/1998/Math/MathML">b(G)>logn+1 so our bound optimal.
منابع مشابه
The Minimal Base Size of Primitive Solvable Permutation Groups
A base of a permutation group G is a sequence B of points from the permutation domain such that only the identity of G fixes B pointwise. Answering a question of Pyber, we prove that all primitive solvable permutation groups have a base of size at most four.
متن کاملDistinguishing Primitive Permutation Groups
Let G be a permutation group acting on a set V . A partition π of V is distinguishing if the only element of G that fixes each cell of π is the identity. The distinguishing number of G is the minimum number of cells in a distinguishing partition. We prove that if G is a primitive permutation group and |V | ≥ 336, its distinguishing number is two.
متن کاملOn the Orders of Primitive Permutation Groups
The problem of bounding the order of a permutation group G in terms of its degree n was one of the central problems of 19th century group theory (see [4]). It is closely related to the 1860 Grand Prix problem of the Paris Academy, but its history goes in fact much further back (see e.g. [3], [1] and [10]). The heart of the problem is of course the case where G is a primitive group. The best res...
متن کاملPrimitive permutation groups of bounded orbital diameter
We give a description of infinite families of finite primitive permutation groups for which there is a uniform finite upper bound on the diameter of all orbital graphs. This is equivalent to describing families of finite permutation groups such that every ultraproduct of the family is primitive. A key result is that, in the almost simple case with socle of fixed Lie rank, apart from very specif...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Monatshefte für Mathematik
سال: 2021
ISSN: ['0026-9255', '1436-5081']
DOI: https://doi.org/10.1007/s00605-021-01599-5