Base sizes of primitive permutation groups

نویسندگان

چکیده

Abstract Let G be a permutation group, acting on set $$\varOmega $$ ? of size n . A subset $${\mathcal {B}}$$ xmlns:mml="http://www.w3.org/1998/Math/MathML">B is base for if the pointwise stabilizer $$G_{({\mathcal {B}})}$$ xmlns:mml="http://www.w3.org/1998/Math/MathML">G(B) trivial. b ( ) minimal subgroup $$\mathrm {Sym}(n)$$ xmlns:mml="http://www.w3.org/1998/Math/MathML">Sym(n) large there exist integers m and $$r \ge 1$$ xmlns:mml="http://www.w3.org/1998/Math/MathML">r?1 such that $${{\,\mathrm{Alt}\,}}(m)^r \unlhd \le {{\,\mathrm{Sym}\,}}(m)\wr {{\,\mathrm{Sym}\,}}(r)$$ xmlns:mml="http://www.w3.org/1998/Math/MathML">Alt(m)r?G?Sym(m)?(r) , where action $${{\,\mathrm{Sym}\,}}(m)$$ />(m) k -element subsets $$\{1,\dots ,m\}$$ xmlns:mml="http://www.w3.org/1998/Math/MathML">{1,?,m} wreath product acts with action. In this paper we prove primitive not base, then either Mathieu group {M}_{24}$$ xmlns:mml="http://www.w3.org/1998/Math/MathML">M24 in its natural 24 points, or $$b(G)\le \lceil \log n\rceil +1$$ xmlns:mml="http://www.w3.org/1998/Math/MathML">b(G)??logn?+1 Furthermore, show are infinitely many groups which $$b(G) > + xmlns:mml="http://www.w3.org/1998/Math/MathML">b(G)>logn+1 so our bound optimal.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Minimal Base Size of Primitive Solvable Permutation Groups

A base of a permutation group G is a sequence B of points from the permutation domain such that only the identity of G fixes B pointwise. Answering a question of Pyber, we prove that all primitive solvable permutation groups have a base of size at most four.

متن کامل

Distinguishing Primitive Permutation Groups

Let G be a permutation group acting on a set V . A partition π of V is distinguishing if the only element of G that fixes each cell of π is the identity. The distinguishing number of G is the minimum number of cells in a distinguishing partition. We prove that if G is a primitive permutation group and |V | ≥ 336, its distinguishing number is two.

متن کامل

On the Orders of Primitive Permutation Groups

The problem of bounding the order of a permutation group G in terms of its degree n was one of the central problems of 19th century group theory (see [4]). It is closely related to the 1860 Grand Prix problem of the Paris Academy, but its history goes in fact much further back (see e.g. [3], [1] and [10]). The heart of the problem is of course the case where G is a primitive group. The best res...

متن کامل

Primitive permutation groups of bounded orbital diameter

We give a description of infinite families of finite primitive permutation groups for which there is a uniform finite upper bound on the diameter of all orbital graphs. This is equivalent to describing families of finite permutation groups such that every ultraproduct of the family is primitive. A key result is that, in the almost simple case with socle of fixed Lie rank, apart from very specif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Monatshefte für Mathematik

سال: 2021

ISSN: ['0026-9255', '1436-5081']

DOI: https://doi.org/10.1007/s00605-021-01599-5